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The zero-temperature phase diagrams of imbalanced fermions in three-dimensional optical lattices are in-
vestigated to evaluate the validity of the Fermi-Hubbard model. It is found that depending on the filling factor,
s-wave scattering strength, and lattice potential, the system may fall into the normal (N) phase, magnetized
superfluid (SF;,), or phase separation of N and Bardeen-Cooper-Schrieffer state. By tuning these parameters,
the superfluidity could be favorable by enhanced effective couplings or suppressed by the increased band gap.
The phase profiles in the presence of a harmonic trap are also investigated under LDA, which show some
exotic shell structures compared to those without the optical lattice.
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In the past few years, great experimental progress has
been achieved in studying ultracold Fermi gases with
polarization.'> With two unequal mixtures of cold °Li atoms
in a harmonic trap,"? clear evidence of phase separation
with an unpolarized superfluid [Bardeen-Cooper-Schrieffer
(BCS)] core and a normal (N) shell around that has been
observed in experiment. Theoretically,®"!> many other
ground-state candidates have been proposed in such systems,
including magnetized superfluid (SF,;), phase separation
(PS), and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
with finite momentum pairing by tuning the interaction pa-
rameter at 1/kgpa,, the polarization P=dn/n, or Zeeman field
h. Since the optical lattice height V) is also tunable, it is very
interesting to study its effect on the new phase diagram. For
equal mixtures, a second-order quantum phase transition be-
tween superfluid (SF) and insulating (IN) phases has been
addressed both experimentally at a critical lattice height V, at
resonance'* and theoretically'>!¢ based on the second-order
perturbation theory. Besides, there are also works on imbal-
anced fermions in optical lattices focusing on IN,'” FFLO,'3
and SF,, (Ref. 19) phases based on an effective Fermi-
Hubbard model.

In this work, starting from the exact lattice spectrum, we
study the ground-state phase diagram of imbalanced two spe-
cies Fermi gases trapped in three-dimensional (3D) optical
lattices in terms of the total filling factor n, polarization P,
s-wave scattering length a,, and lattice potential V. Limited
by the numerical attainment, the FFLO-type pairing is not
considered. The total pairing reciprocal lattice momentums
involved in our simulation are up to the six smallest nonzero
ones, which turn out to be more and more important as V,
increases. Sufficient multiple bands have been taken into ac-
count to ensure the accuracy especially in the strong cou-
pling regime. We demonstrate that there are two contradic-
tory effects of V|, on the SF phase, depending on the average
filling factor n. One is the enhanced density of states (DOS)
inside each band which effectively increases the coupling
strength and thus is favorable to SF; the other is the broad-
ened band gap or discontinuity of DOS which is against SF.
One key point is that besides tuning a, through the Feshbach
resonance (FR), V, can also be tuned and can drive the sys-
tem from weak to strong coupling regime, provided that the
filling factor is properly fixed. Obvious evidence is the emer-
gence of SF,, phase for deep optical lattices at particular
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filling regimes, even in far BCS side of Feshbach resonance.
We also propose that the critical polarization versus total
filling factor diagram obtained can be used to evaluate the
validity of the usual Fermi-Hubbard model. The phase pro-
file in the presence of an external harmonic trap, which is
more relevant to the practical experiment will be studied
with local density approximation (LDA) finally. Some exotic
structures appear, reflecting the uniqueness of the optical lat-
tices.

In a recent experiment,'* two hyperfine states of ultra-
cold °Li atoms, |[F=1/2, mz=1/2) (|1)) and |[F=1/2, my
=—1/2) (|])), had been successfully loaded to an optical
lattice. The low-energy interactions are characterized by a
single s-wave scattering length a,, which can be tuned by
FR. Such a system can be well described by the one-channel
Hamiltonian,

H= f dr 2 () Ho(r) (r)

o=1,]
+g J dr i (r) ] (0) i (1) g (x) (1)

where ﬁozﬁizxyyyz—ﬁzﬁiz/ZM+ Vi sin®(mx;/a); a=\/2 is the

period of the lattice generated in each direction by two op-

positely propagating lasers with wavelength \; Vj, is the lat-

tice height which is usually measured by the recoil energy
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Ep= 2ﬁ MZZ; and g is the renormalized contact interaction con-

stant between two species by eliminating the unphysical di-

vergence due to the high-momentum contribution for fermi
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gases, E = 4—71%2% — ‘—/ ‘125[, .

In the framework of mean-field approach, we expand first

each field operator in terms of eigenwave functions of ﬁo,
P, (1) =2k Puk(Y) Y- The Bloch wave functions ¢y (r)

= %,E(;ank(G)e"("J’G)‘r and energies €, are obtained from the
Schrddinger equation,
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where n={n,,n,,n.}=s,p,... indicate the band indices, k
lie on the first Brillouin zone (BZ), and G=2m/a(l,,l,,l.)

is the reciprocal lattice vector. The solutions satisfy

26an(G)ay(G)= 68,y and a, _(-G)=ay(G). The stan-
dard mean-field treatment gives

H- 2 MolN o= E (enk - M(T) l;bjlk(rlpnka

nko

2
s

* 1%
-2 (Ank¥m-k| ¥k +h.c.) - gE |Aq
Q

mnk
3)
with
Bo=-E3 M )
Q—~ v mnk ‘ﬁm—kilpnkT >
mnk
Amnk = E AQMI?;k’ (4)
Q

and M,?mlbz S Gmk(=G)an (G +Q). Since M0 = 8, and if
m%n Mm:l? are quite small, in the following text we only
consider pairing within each single band, which means that
A nk = Apk Omn- In such a case, the Hamiltonian can be easily
diagonalized, and the thermodynamic potential is calculated

at T=0 as

QO 1

= _2 {G)(_ Enk+)Enk+ + ®(_ Enk—)Enk— té— M
V Vi

[ 2 2 |A()|2
- V(Enk_ﬂ) +Ank}_2 g il (5)
Q

with E .= \e"(enk—,u)2+Aik +h, where p=(u;+u;)/2 and
h=(py=p)/2. From 9Q/dA4=0 and N,=-30/ dp,, we get
the gap and density equations as

AA _ l MgkAnk

& Ve,.>o0 2V”(6nk - )+ sznk '

1 €k — M
n=_<2 1 - E %)’ (6)
Nk Epe>0 V(€ — )+ Apy

5n=i<E2 - > 1). (7)

N\ <0 Eg<0

Here N, is the total number of lattice sites; n=(N;+N,)/N,
and on=(N;=N,)/N, are the total filling factor and the dif-
ference, respectively. Hereafter we scale all the energies in
unit of E and the momenta of 27/a.

To make the numerical simulations attainable but still re-
tain the essence of the problem, besides Q=0 we consider
other six nonzero Q:(*1,0,0),(0,*=1,0),(0,0, =1). Due
to MY =M, and the isotropy of 3D cubic lattices, all six
nonzero Q share the same pairing amplitude A;. Therefore
we get two coupled gap equations in terms of Ay and A,. For
a realistic numerical simulation, we apply a cutoff momen-
tum |qA|=%(l, 1,1) in the renormalization and correspond-
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FIG. 1. (Color online) Ay, A, and A,/A((see inset) vs lattice
potentials V|, for equal mixtures. a/a,=-3. The averaged filling is
fixed to be n=1.

ingly consider the lowest three bands (s,p,d) in each direc-
tion of lattice spectrum. This truncation allows totally n
=54 atoms per site at most, which is well above the experi-
mental interest as well as ours in this Rapid Communication.

Before turning to the phase diagram of imbalanced sys-
tem, first we analyze the necessity of involving nonzero Q in
gap equations for equal mixtures. Figure 1 shows A, A;, and
their ratio as a function of lattice potential V|, at half filling
n=1. It is shown that the Q # 0 pairing becomes more and
more important as V|, increases. This effect can be under-
stood as follows. Taking a very shallow one-dimensional
(1D) lattice, for example, nonzero MY with |Q|=2,4.,6...
and 1,3,5... only exist around kinetic energy-degenerate
points k=0 and k= *1/2, respectively, which contribute
little to gap equations and therefore produce a negligible A,.
In the limit of V=0, these nonzero M,?k exactly cancel with
each other in gap equations, and finally only Q=0 pairing
survives. However as V|, increases, the eigenvector a,;(G)
evolves such that the area of nonzero M expands from
three discrete points in first BZ to considerable regions
around them, leading to an increasing A, with Q #0. Since
our interest is still within s band, the |Q|=1 pairings take a
leading role among all nonzero ones, which is verified both
numerically and analytically from a perturbation theory for
shallow lattices. This is why we just take into account six
smallest nonzero Q in 3D case for not-so-deep lattices. The
consideration of nonzero Q pairing would produce a much
stronger superfluidity especially for deep lattices, which can
also be seen from the comparison of the previous two
works.?

The ground-state phase diagram in Fig. 2 is determined as
follows. We first compare Qpes(p,h=E i, A={Ay,A})
with Qp(u,h=E,;,,A={0}), with A,,; obtained for unpolar-
ized BCS state and E,;,=Min, (V(€,—w)>+A%) as its low-
est excitation energy. If Q> then the first-order phase
transition point h.(<E,;,) is given by

Qpes(i.he, A={A¢,A1}) = Qp(p,h, A =1{0}), (8)

180509-2



PHASE DIAGRAM OF IMBALANCED FERMIONS IN...

FIG. 2. (Color online) Zero-temperature phase diagram as a
function of polarization P.=dn/n, total filling factor n, and lattice
height V,. a/a,=-3. The red dashed (blue solid) lines show that P,
evolves with Vy(n) for fixed n(V;). All the lines above denote the
PS-N boundaries, expect for red solid circles separating SF); and N
phase instead.

nN(ILL’hC) =n. (9)

P.=6ny(u,h.)/n represents a critical point when PS is en-
tirely composed by N phase. Note that in this case the polar-
ized SF or Sarma phase® is unstable due to the negative
superfluid density.!! If Qpcg<Q, then there should be a
stable SF,, interpolating between BCS and N phase. In free
space at the SF;,-N second-order transition point, N denotes
a fully polarized normal state with P.=1.'3 Correspondingly
in optical lattices, we obtain P.=1 at n<<1 and |n-2|/n at
n~?2, as shown by solid circles in Fig. 2.

We analyze that PV, curves reveal two contradictory
effects of increasing V,, to SF depending on the filling factor
n. As shown in Fig. 3, for n=1 increasing V, will flatten
each band and enhance DOS (almost inversely proportional
to the band width); while at n~ 2, increasing V|, produces an
entirely opposite effect due to the enlarged band gap. Ac-
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FIG. 3. Density of state DOS at the Fermi surface versus filling
factor n for single-spin atoms in 3D free space and in lattices with
Vo/Eg=1 (no band gap) and V,/Egr=3 (with band gap). Inset is
DOS for noninteracting Hubbard model. The dotted lines therein
denote two peaks of DOS at (u=t, n,=0.213) and (31—, 1-n,).
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cording to the standard BCS theory, the DOS at the Fermi
surface dramatically affects the strength of SF, as is also
reflected by such contradictory effects. When Vy=3Ej, P,
increases to unity at small n but reduces to zero at n=2,
denoting the IN phase with n;=n =1. For n e (1,2), P, ini-
tially drops down and then goes up, indicating the competi-
tion between these two effects. Here the lattice enhancement
of P, at n=1 is similar to the enhancement of 7. for equal
mixtures in weak coupling limit.?!??

Next we turn to P.-n diagram for fixed V. As is well
known in free space, a first-order BCS to N phase transition
takes place in weak coupling limit at hc:%0 and P(‘:;—g,
with the gap amplitude A0=§E » exp(—#‘avl) and the inter-
action parameter nzﬁzi@ n)~3. P, will increase with
n all along from weak coupling limit (77— —) to the unitary
limit (—0). Within an optical lattice, however, the P.n
curve would be dramatically modified. In weak coupling
limit with small V;, the curve basically follows as that of
DOS in Fig. 3, with a dip at n;~2 and correspondingly a
peak at n,. As V, increases, n, gradually moves to the left
and finally vanishes at n,=0, and finally SF,, state emerges
at n<<1 or n~2. Different from the SF,, studied by dynami-
cal mean field theory (DMFT) method under tight-binding
model,'” the phase shown here is purely due to the enhanced
effective coupling by lattices. In this limit, two fermions are
likely to form a molecule, and the BCS equation directly
reduces to a Schrodinger equation for a single bound
pair.?!?3 It is expected that as V|, increases, the SF,, phase
would extend to a larger or even the whole density region.
Actually, the physics at << 1 and n~ 2 can be related to each
other via particle-hole symmetry. The symmetry is essen-
tially obvious within the background of Fermi-Hubbard
model, .=0.5t>[1-cos(k;a)]. Since (n,u) and (2-n,3t
— ) share the same {A,h, on,Q)} and thus the same critical
on,, the critical polarization P .(n) for n=8 follows as

p
1 n=1
u I1<n=5
P.=\ n ) (10)
8—n
5<n=8
L n

We also compute the phase diagram at other s-wave cou-
plings with fixed V|, as shown in Fig. 4. Different from
Fig. 2, it shows that the increasing a/a, always enhance SF
and improve P, regardless of filling factors. At sufficiently
strong coupling close to unitary, the particle-hole symmetry
in each band breaks down since it is energetically favorable
for particles in s band to overcome the band gap and form
cooper pairs even at n=2. In this case the multiband effect
should be taken into account. This is why SF,, only turns up
at n<<1 but not at n~2 in unitary limit (shown as blue
circles in Fig. 4).

We emphasize that the P.-n diagram in weak coupling
limit can be used to evaluate the validity of tight-binding
approximation (TBA) usually applied to the lattices. For
Hubbard model, the DOS shows two peaks symmetric
around half filling (see inset of Fig. 3) due to the van Hove

180509-3



XIAOLING CUI AND YUPENG WANG

r TT T T
1.0-!:@;—4!—-—-\ alag=-
t \ - =
. \ alag
054 P —————— - ----ala=-3
g H . .\. —- — — M
I . ~. ala;=0
| . \~
i \'\
0.6 - ! N . 4
i . ~oe
o . S — -
o PARES .
I N .
044 7 N PR 5
/ i . .
I A N N .
0.2_l | \“ .. /——-—~\~
I | . e
/i \'\‘ P
I
0.0 T T T T T T
0 1 2 3 4
n

FIG. 4. (Color online) P, versus n diagram at different cou-
plings. V(y=3Eg. All lines denote PS-N boundaries, except that the
green and blue circles show SF,,-N boundaries. The black dashed-
dot line marks the upper limit of peak position based on Fermi-
Hubbard model (see text).

singularity at (u=¢, n=0.213) and (u=2¢, n=0.787). We
also verified numerically that the peak position of P, at dif-
ferent couplings is never greater than 0.426 for arbitrary in-
teractions |U|/t, which is twice as that for the first peak in
DOS. This universal property could be used to justify the
validity of TBA to realistic lattices. Apparently from Fig. 4
we see that the TBA is not applicable to Vy=3E} since at
really weak coupling (a/a,=-9) the peak position n,=0.6
>0.426. The disagreement here indicates the deviation of the
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two lattice spectrum and, thus, the necessity of adopting ex-
act lattice spectrum for not-so-deep lattices.

Finally, it is also useful to consider the phase profile rel-
evant to realistic experiments with an external harmonic po-
tential V(r). Under LDA, the system is assumed to be locally
homogeneous with an averaged chemical potential u(r)
= (o +mo))/2=V(r) and a position-independent difference
h=(pmo;=po,)/2. The phase at position r is determined by
the local [u(r),h], which is also self-consistently related to
the total particle numbers, the s-wave interaction, and the
lattice potential. Here we give several typical phase profiles
with the filling factor in trap center larger than 2. For rela-
tively shallow lattices and very weak s-wave interactions, a
typical one from the trap center to the edge is: BCS-PN-IN-
PN-BCS-PN-FN (PN/FN: partially/fully polarized normal).
Starting from this profile, if V|, increases, PN is very likely to
be replaced by SF,, at positions where n(r)~2 or n(r)<1,
while IN still survive in a certain region; but if s-wave inter-
action increases, then IN shrinks gradually, two BCS regimes
merge together, and PN gives rise to SF;;, with only three
phases left finally: BCS-SF,,-FN. In the latter case, much
higher bands with continuous spectrum would be occupied,
which makes the situation very similar to free space and the
lattice effect is not obvious.
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